Perturbation of the Monomer–Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer
نویسندگان
چکیده
The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer-monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer-tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.
منابع مشابه
Interconversion of different molecular weight forms of human erythrocyte orotidylate decarboxylase.
Orotidylate decarboxylase has been purified approximately 300-fold from human erythrocytes. It was shown to exist in three molecular weight forms, a probable monomer of molecular weight 62,000, a dimer, and a tetramer. Conversion of the monomer to higher molecular weight forms was associated with increased stability to thermal inactivation and was promoted by a number of low molecular weight co...
متن کاملDisruption of the aldolase A tetramer into catalytically active monomers.
The fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) homotetramer has been destabilized by site-directed mutagenesis at the two different subunit interfaces. A double mutant aldolase, Q125D/E224A, sediments as two distinct species, characteristic of a slow equilibrium, with velocities expected for the monomer and tetramer. The aldolase monomer is shown to be catalytically active following isola...
متن کاملSize optimization of silver nanoparticles synthesized by gelcasting using the Taguchi method
In the present study, silver nanoparticles were synthesized by decomposition of AgNO3 via gelcasting. Methacrylamide was used as a low toxic monomer for gel formation. Effect of monomer content (MAM), cross-linker to monomer ratio (MBAM/MAM), silver salt to monomer ratio (AgNO3/MAM), duration of calcination, and temperature of calcination were investigated to optimize the size of nanoparticles....
متن کاملDetermination of Residual Methylmethacrylate Monomerin Denture Base Resins by Gas Chromatography
Acrylic base resins are widely used in orthopedics and dental surgery. It is generally accepted that due to the incomplete conversion of methyl methacrylate (MMA) monomer to the polymer form during polymerization of the resin, some MMA monomers remain in the hardened material. MMA monomer has been reported to cause abnormalities or lesions in several organs of animals. Study of the literatures ...
متن کامل